High Intensity Neutrino Source Report for DOE Site Visit on B&R Code KA15-02-011

Bob Webber August 23, 2010

Project X FY10 – HINS Accomplishments

- Began construction of HINS beam line radiation shielding enclosure
- Installed and commissioned the HINS RFQ once again following RF seal repair at the vendor's facility
- Achieved 2.5 MeV beam from RFQ; then removed RFQ to repair water-to-vacuum leaks
- Completed installation of cryogenics delivery system and cavity test cryostat for HINS 325 MHz cavity test facility
- Assembled first 325 MHz SSR1 cavity into helium jacket
- Successfully completed full-field test of first jacketed 325 MHz SSR1 cavity to 27 MV/m @4K
- Received delivery of the full complement of copper RT-CH cavities from industrial vendor
- Completed assembly of first superconducting solenoid magnet into its cryostat and completed initial magnetic testing of the assembly

Began Construction of Beam Line Shielding Enclosure

Repaired RFQ --- Re-installed and Re-commissioned

First 2.5 MeV Beam through HINS RFQ on January 13, 2010

Signals from toroid and two BPM buttons, all downstream of the RFQ

Upper display: 2 µsec/div Lower display: 20 nsec/div

Lower display shows 44nsec transit delay expected for 2.5 MeV beam between the BPM two buttons separated by 0.96 meters

Beam current is about 3 mA

Profile measurements of 2.5 MeV beam from HINS RFQ

Project X

325 MHz Cavity Test Facility --Cryogenics Delivery System and Cryostat Installed

Assembled First SSR1 Cavity with Helium Jacket and Tuner

First SSR1 Jacketed Cavity Project X Installed in Cavity Test Cryostat

SSR1-01 Performance in HINS Cavity Test Facility

Accepted Final Delivery of Sixteen HINS RT-CH Cavities

First HINS Solenoid Magnet Cryostat Assembly & Tests

Additional FY10 HINS Accomplishments

- Produced near-final Safety Assessment and Radiation Shielding Assessment documents for the HINS beam facility
- Placed purchase order for spare 325 MHz RF klystron \$560,000
- Placed purchase order for ten 325 MHz SSR1 cavities from Roark/NioWave - \$360,000
- Began serious assessment of how past HINS development work on pulsed linac systems is best leveraged to the advantage of a CW Project X linac
 - Studied 325 MHz Single Spoke cavity and helium vessel design modifications for CW operation at 2°K
 - Initiated design modifications required for sub-atmospheric, 2°K,
 operation of the 325 MHz cavity test facility
 - Worked to identify critical beam tests that might be supported

FY11 Transitions

- HINS Linac beam facility
 - Will be absorbed into and managed with pre-Project X activities
 - Funding for this will be moved from KA15-02-011 to the Future
 Accelerators R&D B&B account
- HINS 325 MHz superconducting RF spoke cavity development
 - Will be absorbed into and managed in an integrated manner with the overall Fermilab superconducting RF cavity development effort
 - Will continue to be funded by KA15-02-011
- KA15-02-011 also funds 650 MHz elliptical cavity development

FY11 HINS Beam Facility Scope of Work - Future Accelerators R&D B&R

- Complete construction of HINS beam line radiation shielding enclosure in MDB
- Obtain final operational approvals for the HINS Linac
 - Submit and review the Radiation Shielding Assessment
 - Submit and review the Safety Assessment Document
- Re-establish 2.5 MeV beam from RFQ
- Quantify parameters of 2.5 MeV beam from RFQ
- Replace existing HINS proton ion source with an H- ion source
- Configure the HINS beam line for the "Six-Cavity Test" to verify high power RF vector modulator performance with beam in preparation for Project X beam chopper tests
- Begin pursuit of the Project X beam chopper test
 - Finalize beam line design
 - Specify needed components
 - Begin initial component procurement as budget permits

325 and 650 MHz Programs - B&R Code KA15-02-011

- In FY11 and beyond, SRF technology efforts across all frequencies will be integrated
 - Common planning, budgeting and staffing
 - Collective prioritization of activities
 - Shared design/analysis tools, engineering procedures, lessons learned...
- 650 MHz and, to a lesser extent, 325 MHz will build on successful 1.3 GHz SRF accomplishments
 - Use existing SRF infrastructure with modifications where required
 - Continue collaborations with other labs (national and international) that have been established as part of the ILC/SRF Programs
 - Utilize the same skilled workforce and established procedures
- 325 Spoke cavities require further development and cry for first beam test
- Elliptical cavities near 650 MHz are used for other programs
 - 704 MHz (CERN), 805 MHz (SNS)
 - Nevertheless, the 650 MHz is a new cavity frequency that must be developed in detail

FY11 - 325 MHz Cavity Program Scope of Work

- Reconfigure SSR1-0 (now in the 325 MHz Cavity Test Facility with high Q_{ext} drive antenna) with a beam line power coupler and perfom full high power pulsed testing
- Jacket second SSR1 and test in HINS 325 MHz Cavity Test Facility
- Finalize integrated design of 2°K, CW SSR cavity and tuner system
- Complete construction of:
 - Two SSR1 cavities now being built at IUAC (India)
 - Ten SSR1 cavities now being fabricated at Roark/NioWave
- Design and install modifications to the 325 MHz cavity test facility cryostat and cryogenics delivery systems to support subatmospheric, 2°K and CW operation
- Complete RF and mechanical design of Project X SSR0 cavity and possibly begin fabrication of the first article

FY11 - 325 MHz Cryomodule Program Scope of Work

- Design a short (~four cavity) prototype Project X spoke cavity cryomodule
 - Integrate SSR cavities, tuners, power couplers, solenoid magnets and beam instrumentation components
 - Ultimately destined for beam test in HINS Linac
- Continue prototype work on solenoid magnets for SSR cryomodule
- Finish assembly of three HINS individually-cryostated solenoid magnets
 - Complete magnetic testing
 - Investigate warm-to-cold alignment issues

Project X FY11 - 650 MHz Scope of Work

- Modify existing EP facility and VTS for 650 MHz cavities
- Fabricate required handling and assembly fixtures
- Process & test single-cell 650 MHz β = 0.9 cavities (ANL, FNAL, India)
 - Six single-cell β = 0.9 cavities are being ordered in FY10
- Extend the RF and mechanical design of 650 MHz cavities to five-cell structures
- Continue support for work at collaborating institutions
 - JLab: Single-cell β = 0.6 design, prototype, process & test, CM study
 - ANL: Process $\beta = 0.9$ cavities, design study (elliptical vs. TSR)
 - India: single-cell β = 0.9 design and prototype, modified Type 4 CM design
- Depending on financial status and technical progress, order first prototype of 5-cell 650 MHz cavity
- Design radiation shielding enclosure for 650 MHz cavity test facility in MDB
- Specify and procure cryogenic delivery system components for 650 MHz cavity test facility in MDB

Summary

• FY10

- A year of major accomplishments for the HINS program
- A year of planning and preparing for upcoming organizational and programmatic transitions
- FY11 will see management and organization of the historic HINS program completely integrated into the SRF and Project X programs
- FY11 will see program goals re-defined in direct support Project X and SRF objectives
- A large scope of work is identified for FY11
 - Within the B&R Code KA15-02-011 for 325 MHz and 650 MHz superconducting cavity and cryomodule development activities
 - Within Future Accelerator R&D B&R Code for HINS Linac support of Project X objectives

Back-up slides

3 GeV CW Linac

Design based on 3 families of 325 MHz Single Spoke resonators, two families of 650 MHz elliptical cavities, then 1300 MHz ILC cavities

Ion source, RFQ

Summary of 3 GeV CW linac cavities

Section	Energy range MeV	β	Number of cavities	Type of cavities	Maximal power per cavity*, kW
SSR0 (β _G =0.12)	2.5-10	0.073-0.146	26	Single spoke cavity.	0.5
SSR1 (β _G =0.22)	10-32	0.146-0.261	18	Single spoke cavity.	1.5
SSR2 (β _G =0.4)	32-160	0.261-0.52	44	Single spoke cavity.	3.2
650 MHz (β _G =0.61)	160 - 500	0.52-0.758	42	Elliptic cavity	11.5
650 MHz (β _G =0.9)	50 - 2000	0.758-0.95	96	Elliptic cavity	18.5
1300 MHz (β _G =1)	2000- 3000	0.95- 0.97	64	Elliptic cavity	16

Summary of Cavity Parameters for PX

cavity type	Freq. MHz	L _{eff} mm	E _{acc} MV/m	E _{max} MV/m	B _{max} [mT]	R/Q Ω	G Ω	Q _{0,2K} ×10 ⁹	P _{2K} [W]
LB650, 5-cell, β=0.61	650	705	16.6	37.5	70	378	191	15	24.1
HB650, 5-cell, β=0.9	650	1038	18.6	37.3	70	638	255	20	29.2
ILC, 9-cell, β=1	1300	1038	16.9	34	72	1036	270	15.0	19.8

SSRO cavity design

- Few iterations in concepts of cavity / solenoid designs to minimize period (690→605 mm)
- In lattice was used: L_p=610 mm
- Solenoid with BPM and correctors is to be designed
- Mechanical design: minimizing of df/dP
- RF coupler design is in progress
- Tuners design

F(MHz)	325	MHz
β _{optimal}	0.117	
R _{cavity}	204.3	mm
L wall- to-wall	175.5	mm
R/Q	110	Ω
G	52	Ω
E _{max} /E _{acc}	5.97	
$H_{\text{max}}/E_{\text{acc}}$	6.89	mT/(MV/m)
$D_{\text{eff}} = (2\beta_{\text{opt}}\lambda/2)$	108	mm

DOE Site Visit - B&R KA15-02-011 - Bob Webber

SSR1 cavity:

TEST CRYOSTAT SHELL OUTLINE

SSI COLD MASS ASSEMBLY-WITH MAG SHIELD AND

800mm

Section period 750 mm →800 mm (increased after review) Cavity status

- 2 prototypes tested (Max gradient 34MV/m at 2K)
- 1st SSR1 dressed
- +2 in production in India
- +10 order from Roark

Solenoid status

- Design is completed 2008
- Prototype in production

Cryomodule

- Design of spoke resonator cryomodule is starting
- Problems Initially the cavity was optimized for pulse operation. For CW operation modifications may be

	SSR1 ASSEMBLY				requir	ed.
				F(MHz)	325	MHz
		13,00		$eta_{ ext{optimal}}$	0.21	
		8,52		R _{cavity}	245.7	mm
		£48	.00	L wall- to-wall	295	mm
		11.94		R/Q	242	Ω
4	Y P			G	84	Ω
[]				E _{max} /E _{acc}	3.93	
				H_{max}/E_{acc}	5.8	mT/(MV/m)
<i></i>	SUPPORT POST ASSEMBLY	DOE Site	Visit - B&	RD _{eff} =(2β _{0pt} λ/2)	193	mm
	800mm -	\longrightarrow	Bob We	ebber		

SSR2 section: cavity, solenoid

SSR2 cavity

- RF design done (possible changes)
- Mech. design is to be completed.

Latest changes not reflected

Solenoid:

- Design completed
- Prototype ready for test (w/o vessel)

Operating frequency	325	MHz
$oldsymbol{eta_{G}}$	0.4	
Cavity Length from wall to wall	406	mm
Dressed cavity length	~530	mm
Cavity diameter	556.2	mm
R/Q	322	Ω
G-factor	112	Ω
Max. gain per cavity (φ-0)	3.16	MeV
Max. surface electric field	33	MV/m
Max.surface magnetic field	54	mT

Bore diameter	30	mm
Available slot length	<294	mm
Squared magnetic field integral	580	T ² -cm
Integrated strength of steering dipoles*	0.5	T-cm
Operating current	< 200	A
Fringe field on the walls of cavities	<10	μ T

^{*} Corrector provides ~6 mm solenoid centre correction

Project X 650MHz B = 0.9 Single Cell

650 MHz, 5-cell cavities

Preliminary layout of a beta=0.9 650 MHz 5-cell cavity

- •EM design of the cavity is finished;
- •Mechanical design is underway: df/dP, tuners, RF coupler
- •HOM couplers?

	2K (Flow/Plant),W	5K(Flow/Plant), W	70K(Flow/Plant), W	Total plant,W
RF = 0kW	0.04 / 28.1	0.99 / 196	7.85 / 62.8	287
RF = 20kW	0.065 / 45.7	1.27 / 251.5	8.55 / 68.4	366
RF = 30kW	0.078/ 54.8	E Site Visit - B&R KA15-02 1.41b/\\239-2	8.87 / 71.0	405 30

Summary of the Cavity Parameters

Low energy SC Linac (2.5 - 160 MeV)

cavity type	F req MHz	U _{acc, max} MeV	E _{max} MV/m	B _{max} mT	R/Q, Ω	G, Ω	Q _{0,2K} ×10 ⁹	P _{max,2K} W
SSRO, β=0.117	325	0.78	53	59.5	120	57	9.5	0.77
SSR1, β=0.22	325	1.53	34.4	50.8	242	84	14.0	0.94
SSR2, β=0.4	325	3.16	33	54	322	112	18.0	2.07

High energy SC Linac (160 - 3000 MeV)

cavity type	Freq. MHz	L _{eff} mm	E _{acc} MV/m	E _{max} MV/m	B _{max} [mT]	R/Q Ω	Θ Ω	Q _{0,2K} ×10 ⁹	P _{2K} [W]
LB650, 5-cell, β=0.61	650	705	17.1	38.6	72	378	191	15.0	24.1
HB650, 5-cell, β=0.9	650	1038	19.2	38.4	72	638	255	20.0	29.2
ILC, 9-cell, β=1	1300	1038	16.9	34	72	1036	270	15.0	19.0

Project X RFQ and 2.5 MeV Beamline

Project X RFQ and 2.5 MeV Beamline

Spoke Cavity Input Coupler Test Stand

First full-power coupler tests have been successfully completed

Wall Thickness for 650 MHz

Max. sag of an ILC cavity is 123 µm for 2.8mm wall thickness.

650 MHz, beta=0.9, 5 -cell cavity geometry

